Как Сделать Двоичное Ограничение При Поиске Решения в Excel • Функция строка

Двоичный поиск

Синонимы названия метода: двоичный поиск, бинарный поиск, метод деления пополам, метод половинного деления, дихотомия.

1.1 Общее описание алгоритма

Метод двоичного поиска используется в качестве быстрого варианта поиска в заранее отсортированном массиве. Получил распространение благодаря как наименьшей из возможных высоте алгоритма, так и из-за ряда своих вычислительных характеристик, а также (в среде нечисленных алгоритмов) из-за своей рекурсивности, то есть лёгкости записи.

Основная идея заключается в дроблении массива на половины и дальнейшем рекурсивном поиске в одной из них.

Метод позволяет различные обобщения и видоизменения:

    , был представлен А. К. Чандрой в 1971 году Дональду Кнуту, который опубликовал его в своей монографии [1] . , когда отрезок делится на три части. Применяется для поиска положения экстремума функции. , делящий область поиска не пополам, а предсказывающий позицию искомого элемента на основе разницы значений. Работает быстрее, если элементы распределены достаточно равномерно — в среднем [math]O(\log \log n)[/math] . В худшем случае, работает за [math]O(n)[/math] ). (англ.fractional cascading ), предложенный в 1986 году Бернаром Шазеллем и Леонидасом Дж. Гуйбасом, как техника ускорения бинарного поиска в многомерных массивах. [4][5][6] .

Вариации также могут касаться формата и сути вывода результата в отдельных случаях (см. варианты возврата при ненахождении).

Очень близко к метод бинарного поиска по массиву стоит непрерывный аналог — метод бисекции (метод деления пополам) нахождения корня непрерывной функции на заданном отрезке. Самое большое отличие заключается в вычислении значения функции вместо нахождения элемента массива по его индексу, а также использование действительных чисел в качестве аргумента в отличие от целых чисел для индексации элементов массива.

По своему определению, алгоритм может быть записан в одной из двух основных форм — рекурсивной и итеративной. Поскольку вычислительное ядро в них одинаковое, но в рекурсивном есть дополнительная нагрузка по вызову функций и хранению их стека, в данной статье рассматривается только итеративная версия.

1.2 Математическое описание алгоритма

Исходные данные: одномерный массив [math]n[/math] чисел [math]x_i, i=0..n-1[/math] , упорядоченный по возрастанию (точнее — неубыванию) или убыванию (точнее — невозрастанию), а также число [math]A[/math] , которое нужно найти в этом массиве.

Вычисляемые данные: индекс (номер позиции) элемента, равного искомому (или ответ, что такого элемента нет).

1.3 Вычислительное ядро алгоритма

Вычислительное ядро метода бинарного поиска состоит из операций сравнения и получения середины отрезка, которые рекуррентно выполняются для массивов всё меньшего размера. Количество сложений, умножений и сравнений прямо пропорционально количеству итераций, а оно не больше [math][ \log_2 n][/math] .

1.4 Макроструктура алгоритма

По определению алгоритм состоит из рекурсивных вызовов самого себя для меньших массивов. Стандартные макрооперации не используются.

1.5 Схема реализации последовательного алгоритма

В рекурсивном варианте определяется функция, принимающая в числе прочих параметров индексы концов отрезка массива, на котором идёт текущий поиск, а операция «идём к шагу 2» означает вызов той же функции поиска с другими индексами концов отрезка.

В итеративном варианте пп. 2-5 обёрнуты в бесконечный цикл, выход из которого возможен либо в п. 2 (как неуспешный), либо в п. 5, когда значение найдено.

1.6 Последовательная сложность алгоритма

Таким образом, алгоритм обладает логарифмической временной сложностью по данным и даже последовательная реализация достаточно быстра и, в принципе, не нуждается в распараллеливании.

1.7 Информационный граф

Граф алгоритма является параметризованным (зависит от размера массива) и недетерминированным (в смысле, что порядок вычислений зависит от начальных данных).

На рисунке ниже изображён граф алгоритма для [math]K = 9[/math] . Как видно, граф чисто последовательный. Ввод и вывод обозначен только для начального коэффициента и значения многочлена. Op — операция «сравнить значение массива на позиции [math]m_k[/math] с искомым элементом [math]A[/math] и обновить значение пары [math](l_k, r_k)[/math] ».

1.8 Ресурс параллелизма алгоритма

Однако существует очевидная модификация алгоритма, которая позволяет использовать любое наперёд заданное число процессоров [math]p[/math] — деление не на 2 части, а на [math]p+1[/math] часть. При этом вычисления всех новых узлов, а также сравнение значений в них с [math]A[/math] можно проводить независимо, а значит параллельно. В этом случае, высота ЯПФ будет порядка [math]K=\log_ n[/math] .

1.9 Входные и выходные данные алгоритма

Входные данные: массив [math]x[/math] (элементы [math]x_i[/math] ). Число [math]A[/math] .

Выходные данные: индекс элемента [math]A[/math] в массиве, если он есть.

1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности алгоритма: [math]\frac <\log_

n>=\log_2 (p+1)[/math] .

Алгоритм абсолютно устойчив, так как действия производятся только над целыми числами, и поэтому погрешность всегда равна 0.

Алгоритм недетерминирован в смысле структуры вычислительного процесса, так как число итераций, а значит и число операций, зависят от входных данных, в частности от искомого значения [math]A[/math] . Однако он детерминирован в смысле, что выдаёт всегда одинаковый результат при одинаковых входных данных.

специалист
Мнение эксперта
Витальева Анжела, консультант по работе с офисными программами
Со всеми вопросами обращайтесь ко мне!
Задать вопрос эксперту
К полученному результату дописывается ещё один бит чётности так, чтобы количество единиц в двоичной записи полученного числа стало чётным. Если же вам нужны дополнительные объяснения, обращайтесь ко мне!
По каналу связи передаются сообщения, содержащие только четыре буквы: А, Б, В, Г; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв А и Б используются такие кодовые слова: А – 0; Б – 1011. Укажите сумму длин кратчайших кодовых слов для букв В и Г, при котором код будет допускать однозначное декодирование.
Результат функции СУММЕСЛИ

Вариант 7

    , был представлен А. К. Чандрой в 1971 году Дональду Кнуту, который опубликовал его в своей монографии [1] . , когда отрезок делится на три части. Применяется для поиска положения экстремума функции. , делящий область поиска не пополам, а предсказывающий позицию искомого элемента на основе разницы значений. Работает быстрее, если элементы распределены достаточно равномерно — в среднем [math]O(\log \log n)[/math] . В худшем случае, работает за [math]O(n)[/math] ). (англ.fractional cascading ), предложенный в 1986 году Бернаром Шазеллем и Леонидасом Дж. Гуйбасом, как техника ускорения бинарного поиска в многомерных массивах. [4][5][6] .

Унарное ограничение ограничение на одну переменную (например, X ≠ 4). Бинарное ограничение — это ограничение пары переменных (например, X ≠ Y). В общем случае k-арное ограничение имеет размер k. . Цель состоит в том, чтобы найти модель, присвоение значения каждой переменной, такую, чтобы выполнялись все ограничения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: