Как сделать среднее значение в excel график?
Чаще всего используются обычный линейный тренд и линия скользящего среднего. Линейный тренд – это прямая линия, расположенная таким образом, чтобы расстояние от неё до любой из точек графика было минимальным. Эта линия полезна в том случае, если есть уверенность, что последующие данные будут соответствовать тому же шаблону.
Линии тренда в Excel – это отличный способ получить больше информации об имеющемся наборе данных и о том, как они изменяются со временем. Линейный тренд и скользящее среднее – два типа линий тренда, наиболее распространённых и полезных для бизнеса.
Урок подготовлен для Вас командой сайта office-guru.ru
Источник: /> Перевел: Антон Андронов
Правила перепечаткиЕще больше уроков по Microsoft Excel
Для того чтобы найти среднее значение в Excel (при том неважно числовое, текстовое, процентное или другое значение) существует много функций. И каждая из них обладает своими особенностями и преимуществами. Ведь в данной задаче могут быть поставлены определенные условия.
Например, средние значения ряда чисел в Excel считают с помощью статистических функций. Можно также вручную ввести собственную формулу. Рассмотрим различные варианты.


Better Explained: Как правильно посчитать среднюю температуру по больнице / Newtonew: новости сетевого образования
- Ставим курсор в ячейку А2 (под набором чисел). В главном меню – инструмент «Редактирование» — кнопка «Сумма». Выбираем опцию «Среднее». После нажатия в активной ячейке появляется формула. Выделяем диапазон: A1:H1 и нажимаем ВВОД.
- В основе второго метода тот же принцип нахождения среднего арифметического. Но функцию СРЗНАЧ мы вызовем по-другому. С помощью мастера функций (кнопка fx или комбинация клавиш SHIFT+F3).
- Третий способ вызова функции СРЗНАЧ из панели: «Формула»-«Формула»-«Другие функции»-«Статические»-«СРЗНАЧ».
После этого, окно аргументов функции свернется, а вы сможете выделить ту группу ячеек на листе, которую берете для расчета. Затем, опять нажимаете на кнопку слева от поля ввода данных, чтобы вернуться в окно аргументов функции.
Затраты на производство молока
Требуется определить среднюю себестоимость 1 ц молока по всем предприятиям.
Для расчета средней необходимо определить общее производство молока по всем предприятиям и затраты на его производство. Средняя себестоимость 1 ц молока будет рассчитываться по формуле средней гармонической:
руб.
Средняя себестоимость 1 ц молока по всем сельскохозяйственным предприятиям составляет 450 руб.
Технология решения задачи в табличном процессоре Microsoft Excel следующая.
1. Введите исходные данные в соответствии с рис. 2.9.
2. Рассчитайте производство молока по предприятиям.
3. Рассчитайте общие затраты на производство молока.
3.2. Щелкните левой кнопкой мыши на панели инструментов на букве кнопки .
4. Рассчитайте общее производство молока. Для этого вставьте в ячейку Е12 математическую функцию =СУММ(D2:D9). Порядок расчетов изложен в пункте 3.
5. Рассчитайте среднюю себестоимость 1 ц молока как среднюю гармоническую. Для этого введите в ячейку Е13 формулу =E11/E12.
Результаты решения выводятся на экран дисплея в следующем виде (рис. 2.10).

Средняя гармоническая и условия ее применения — Экономика.
Существует ещё третий способ запустить функцию «СРЗНАЧ». Для этого, переходим во вкладку «Формулы». Выделяем ячейку, в которой будет выводиться результат. После этого, в группе инструментов «Библиотека функций» на ленте жмем на кнопку «Другие функции». Появляется список, в котором нужно последовательно перейти по пунктам «Статистические» и «СРЗНАЧ».
Среднее арифметическое
среднее арифметическое = сумма всех величин/количество величин
Задачка: вы весите 75 кг и зашли в лифт с подростком весом 50 кг и толстяком весом 175 кг. Каков средний вес вашей группы?
На самом деле вопрос стоит так: Если заменить вашу весёлую компанию тремя клонированными людьми с одинаковым весом, каким весом должен обладать каждый такой клон?
В этом случае мы просто заказываем на фабрике по производству клонов человека трёх экземпляров весом в 100 килограмм каждый (Помним: (75+50+175)/3) и довольно потираем руки.
Преимущества среднего арифметического:
- Отлично работает для совокупностей, значения которых легко складываются;
- Просто вычисляется: складывай, разделяй и властвуй;
- Интуитивно понятно — среднее арифметическое для нас как раз и является «числом где-то в середине» между наибольшим и наименьшим значением.
Среднее арифметическое срабатывает в 80% случаев. К сожалению, 20% оставшихся случаев и вынуждают нас искать альтернативы для подсчёта среднего значения.

Гармоническое среднее
- Передача данных: Мы передаём данные между клиентом и сервером. Клиент посылает данные за плату 10 Гб/доллар, а сервер получает их за плату 20 Гб/доллар. Каково среднее количество Гб, которые можно передать и получить за один доллар? Мы усредняем значения для клиента и для сервера: 2 / (1/10 + 1/20) = 13,3 Гб/доллар для каждой стороны. Поскольку данные и передаются, и получаются (каждая сторона выполняет свою половину работу), мы делим это значение на 2 и получаем следующее значение: 6,65 Гб за доллар.
- Продуктивность машины: У нас есть производственная установка для подготовки и полировки деталей. За час установка может подготовить 25 деталей; либо за тот же час она может отполировать 10 деталей. Какова средняя производительность установки? Усредняем значения для каждой стадии: 2 / (1/25 + 1/10) = 14,28 деталей/час. Снова делим это значение на два, поскольку нас интересует средняя производительность установки, если она занимается сразу двумя фазами: получаем 7,14 деталей/час.
Для расчёта средней арифметической взвешенной интервального ряда распределения определим центральное (серединное) значение признака в каждом интервале. На каждый открытый интервал условно распространим величину смежного закрытого интервала: