Что Такое Относительная Погрешность в Excel • Погрешность округления

Абсолютная и относительная погрешности

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Международный конкурс по экологии «Экология России»

Доступно для всех учеников 1-11 классов и дошкольников

Имея дело в вычислениях с бесконечными десятичными дробями, приходится для удобства выполнять приближение этих чисел, т. е. округлять их. Приблизительные числа получаются также при различных измерениях.

Бывает полезно узнать, как сильно приближенное значение числа отличается от его точного значения. Понятно, что чем это различие меньше, тем лучше, тем точнее выполнено измерение или вычисление.

Для определения точности измерений (вычислений) вводят такое понятие как погрешность приближения. По-другому его называют абсолютной погрешностью.

Абсолютной погрешностью приближения называется модуль разности между точным значением числа и его приближенным значением.

где х — это точное значение числа, а — его приближенное значение.

Например, в результате измерений было получено число . Однако в результате вычисления по формуле точное значение этого числа . Тогда абсолютная погрешность приближения

В случае с бесконечными дробями погрешность приближения определяется по той же формуле. На месте точного числа записывается сама бесконечная дробь. Например, . Здесь получается, что абсолютная погрешность приближения выражена иррациональным числом.

Приближение может выполняться как по недостатку , так и по избытку .

То же число π при приближении по недостатку с точностью до 0,01 равно 3,14, а при приближении по избытку с точностью до 0,01 равно 3,15.

Правило округления: если первая отбрасываемая цифра равна пяти или больше пяти, то выполняется приближение по избытку; если же меньше пяти, то по недостатку.

Например, т.к. третьей цифрой после запятой у числа π является 1, то при приближении с точностью до 0,01 оно выполняется по недостатку.

Вычислим абсолютные погрешности приближения до 0,01 числа π по недостатку и по избытку:

Как видим, абсолютная погрешность приближения по недостатку меньше, чем по избытку. Значит, приближение по недостатку в этом случае обладает более высокой точностью.

Абсолютная погрешность обладает одним важным недостатком – оно не позволяет оценить степень важности ошибки.

Поэтому сама по себе абсолютная погрешность малоинформативная. Кроме неё очень часто дополнительно рассчитывают относительное отклонение.

Относительной погрешностью приближения называется отношение абсолютной погрешности к точному значению числа.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

Пример 1. На предприятии 1284 рабочих и служащих. Округлить количество работающих до целых с избытком и с недостатком. Найти их абсолютные и относительные погрешности (в процентах). Сделать вывод.

Значит, точность приближения с недостатком выше, чем точность приближения с избытком.

Пример 2. В школе 197 учащихся. Округлить количество учащихся до целых с избытком и с недостатком. Найти их абсолютные и относительные погрешности (в процентах). Сделать вывод.

Значит, точность приближения с избытком выше, чем точность приближения с недостатком.

Приближённое значение числа х равно а . Найдите абсолютную погрешность приближения, если:

Найдите приближённое значение числа х , равное среднему арифметическому приближений с недостатком и избытком, если:

Докажите, что среднее арифметическое чисел а и b является приближённым значением каждого из этих чисел с точностью до .

Представьте обыкновенную дробь в виде десятичной и округлите её до тысячных и найдите абсолютную погрешность:

Докажите, что каждое из чисел 0,368 и 0,369 является приближённым значением числа с точностью до 0,001. Какое из них является приближённым значением числа с точностью до 0,0005?

Докажите, что каждое из чисел 0,38 и 0,39 является приближённым значением числа с точностью до 0,01. Какое из них является приближённым значением числа с точностью до 0,005?

Округлите число до единиц и найдите относительную погрешность округления:

Представьте каждое из чисел и в виде десятичной дроби. Округлив полученные дроби до десятых, найдите абсолютную и относительную погрешности приближений.

Представьте каждое из чисел и в виде десятичной дроби. Округлив полученные дроби до десятых, найдите абсолютную и относительную погрешности приближений.

Радиус Земли равен 6380 км с точностью до 10 км. Оцените относительную погрешность приближённого значения.

Наименьшее расстояние от Земли до Луны равно 356400 км с точностью до 100 км. Оцените относительную погрешность приближения.

Сравните качества измерения массы М электровоза и массы т таблетки лекарства, если т (с точностью до 0,5 т), а г (с точностью до 0,01 г).

Сравните качества измерения длины реки Волги и диаметра мячика для настольного тенниса, если км (с точностью до 5 км) и мм (с точностью до 1 мм).

специалист
Мнение эксперта
Витальева Анжела, консультант по работе с офисными программами
Со всеми вопросами обращайтесь ко мне!
Задать вопрос эксперту
Шкала это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Если же вам нужны дополнительные объяснения, обращайтесь ко мне!
Это ошибки, возникающие при вводе информации. Например, документ может быть отсканирован неправильно, и его данные по ошибке перенесутся неверно. Или люди, заполняющие опросы на смартфоне или ноутбуке, могут нажимать не те клавиши.
Формула относительной погрешности

Погрешность измерения — что это такое, определение в маркетинге на ROMI center

Случайная погрешность бывает статической и динамической. Динамическая погрешность возникает, когда мы имеем дело с меняющимися значениями — например, количество человек в выборке при маркетинговом исследовании. Статическая погрешность описывает ошибки при вычислении неизменных величин — вроде количества вопросов в вопроснике. Все они относятся к случайным погрешностям.

Источники погрешностей

Рассмотрим различные причины возникновения погрешностей.

Математическая модель задачи является неточной

Ошибки в исходных данных

Следует стремиться к тому, чтобы все исходные данные были примерно одинаковой точности. Сильное уточнение одних исходных данных при наличии больших погрешностей в других не приводит к повышению точности конечных результатов. Если какие-то отдельные точки данных (измерения) явно ошибочные, их можно исключить из вычислений.

Вычислительные ошибки (ошибки округления)

Ошибки этого типа проявляются из-за дискретной (а не непрерывной) формы представления величин в компьютере. Вычислительные ошибки можно свести к минимуму продуманно организовывая алгоритмы.

Численные методы
Любой расчет состоит из истинного и вычисляемого значения. При этом всегда должны учитываться значения ошибки или погрешности. Погрешность — это расхождение между истинным значением и вычисляемым. В маркетинге выделяют следующие виды погрешностей.
специалист
Мнение эксперта
Витальева Анжела, консультант по работе с офисными программами
Со всеми вопросами обращайтесь ко мне!
Задать вопрос эксперту
Систематическая погрешность существует в результатах исследования, если эти результаты показывают устойчивую тенденцию к отклонению от истинных значений. Если же вам нужны дополнительные объяснения, обращайтесь ко мне!

У поверяемого датчика давления со шкалой измерения от 0 до 250 mbar основная относительная погрешность измерения во всем диапазоне измерений равна 5%. Датчик имеет токовый выход 4…20 мА. На датчик калибратором подано давление 125 mbar, при этом его выходной сигнал равен 12,62 мА. Необходимо определить укладываются ли показания датчика в допустимые пределы.

Погрешности измерения датчиков КИП. Классы точности | КИПиА от А до Я

Мерой точности является относительная погрешность измерений. Получаем: \begin \delta_1=\frac\cdot 100\text=2,5\text\\ \delta_2=\frac\cdot 100\text=0,75\text \end Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: \(\delta_2\lt \delta_1\), второе измерение точней.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: