Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Аппроксимация опытных данных. Метод наименьших квадратов

Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

— с помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

Рис.1. Аппроксимирующая кривая, построенная по методу наименьших квадратов

— для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

— для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

— для аппроксимации точечных значений некоторой аппроксимирующей функцией.

— значения расчетной аппроксимирующей функции в узловых точках ,

— заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом «хороших» свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

Аппроксимация исходных данных линейной зависимостью

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Поиск неизвестных коэффициентов осуществляется по методу наименьших квадратов в соответствии со следующей системой уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом:

Для применения метода наименьших квадратов экспоненциальная функция линеаризуется:

Поиск неизвестных коэффициентов осуществляется по методу наименьших квадратов в соответствии со следующей системой уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом:

Для применения метода наименьших квадратов степенная функция линеаризуется:

Поиск неизвестных коэффициентов осуществляется по методу наименьших квадратов в соответствии со следующей системой уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом:

Выбор наилучшей аппроксимирующей функции определяется значением среднеквадратического отклонения. В связи с этим следует по методу наименьших квадратов определить несколько аппроксимирующих функций, а затем по критерию наименьшего среднеквадратического отклонения выбрать наиболее подходящую функцию.

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Моделирование в электроэнергетике - Аппроксимация опытных данных. Метод наименьших квадратов
Заполнив указанные поля, несколько раз нажимаем кнопку ОК и получаем готовый график динамики. Теперь выделяем правой кнопкой мыши саму линию графика и из появившегося контекстного меню выбираем пункт Добавить линию тренда
специалист
Мнение эксперта
Витальева Анжела, консультант по работе с офисными программами
Со всеми вопросами обращайтесь ко мне!
Задать вопрос эксперту
Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений экспериментальные данные. Если же вам нужны дополнительные объяснения, обращайтесь ко мне!
На последнем этапе выполним оценкустатистической надежности моделирования спомощью F – критерия Фишера. Для этого выполним проверку нулевой гипотезы Н о статистической не значимости полученного уравнения регрессиипо условию:

Оцифровка и тарирование графиков

Excel для Microsoft 365 Excel для Microsoft 365 для Mac Excel для Интернета Excel 2023 Excel 2023 for Mac Excel 2019 Excel 2019 для Mac Excel 2016 Excel 2016 для Mac Excel 2013 Excel 2010 Excel 2007 Excel для Mac 2011 Excel Starter 2010 Больше. Основные параметры

Тогда средняя ошибка аппроксимации равна

Область Средний размер назначенных ежемесячных пенсий, у.д.е., у Прожиточный минимум в среднем на одного пенсионера в месяц, у.д.е., х
Орловская
Рязанская
Смоленская
Тверская
Тульская
Ярославская

Эмпирические коэффициенты регрессии b , b1 будем определять с помощью инструмента «Регрессия» надстройки «Анализ данных» табличного процессораMS Excel.

Алгоритм определения коэффициентов состоит в следующем.

1. Вводимисходные данные в табличный процессор MS Excel.

4. Заполняем соответствующие позиции окна Регрессия (рисунок 4).

5. Нажимаем кнопку ОК окна Регрессия и получаем протокол решения задачи (рисунок 5)

Из рисунка 5 видно, что эмпирические коэффициенты регрессии соответственно равны

Тогда уравнение парной линейной регрессии, связывающая величину ежемесячной пенсии у с величиной прожиточного минимумахимеет вид

На следующем этапе, в соответствии с заданием необходимо определить степень связи объясняющей переменной х с зависимой переменной у, используя коэффициент эластичности. Коэффициент эластичности для модели парной линейной регрессии определяется в виде:

Следовательно, при изменении прожиточного минимума на 1% величина ежемесячной пенсии изменяется на 0,000758%.

Далее определяем среднюю ошибку аппроксимации по зависимости

Для этого исходную таблицу 1 дополняем двумя колонками, в которых определяем значения, рассчитанные с использованием зависимости (3.2) и значения разности .

Таблица 3.2. Расчет средней ошибки аппроксимации.

Область Средний размер назначенных ежемесячных пенсий, у.д.е., у Прожиточный минимум в среднем на одного пенсионера в месяц, у.д.е., х
Орловская 0,032
Рязанская 0,045
Смоленская 0,021
Тверская 0,012
Тульская 0,028
Ярославская 0,017
S=0,155

Тогда средняя ошибка аппроксимации равна

Из практики известно, что значение средней ошибки аппроксимации не должно превышать (12…15)%

На последнем этапе выполним оценкустатистической надежности моделирования спомощью F – критерия Фишера. Для этого выполним проверку нулевой гипотезы Н о статистической не значимости полученного уравнения регрессиипо условию:

если при заданном уровне значимости a = 0,05 теоретическое (расчетное) значение F-критерия больше его критического значения Fкрит (табличного), то нулевая гипотеза отвергается, и полученное уравнение регрессии принимается значимым.

Из рисунка 5 следует, что Fрасч = 0,0058. Критическое значение F-критерия определяем с помощью использования статистической функции FРАСПОБР (рисунок 6). Входными параметрами функции является уровень значимости (вероятность) и число степеней свободы 1 и 2. Для модели парной регрессии число степеней свободы соответственно равно 1 (одна объясняющая переменная) и n-2 = 6-2=4.

Из рисунка 6 видно, что критическое значение F-критерия равно 7,71.

специалист
Мнение эксперта
Витальева Анжела, консультант по работе с офисными программами
Со всеми вопросами обращайтесь ко мне!
Задать вопрос эксперту
Полученные результаты, как и в методе выше, это лишь готовый результат расчета прогнозного значения по линейной трендовой модели, он не выдает ни погрешностей, ни самой модели в математическом выражении. Если же вам нужны дополнительные объяснения, обращайтесь ко мне!
Минус данного метода в том, что он не показывает ни уравнения модели, ни его коэффициентов, из-за чего нельзя сказать, что на основе такой-то модели мы получили такой-то прогноз, также как и нет какого-либо отражения параметров качества модели, того таки коэффициента детерминации, по которому можно было бы сказать имеет ли смысл брать во внимание полученный прогноз или нет.
Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Линейная фильтрация в excel. Решение задач аппроксимации средствами Excel

Полиномиальная линия тренда используется для описания попеременно возрастающих и убывающих данных. Степень полинома подбирают таким образом, чтобы она была на единицу больше количества экстремумов (максимумов и минимумов) кривой.

Область Средний размер назначенных ежемесячных пенсий, у.д.е., у Прожиточный минимум в среднем на одного пенсионера в месяц, у.д.е., х
Орловская
Рязанская
Смоленская
Тверская
Тульская
Ярославская

Метод экспоненциального сглаживания.

Альтернативный подход к сокращению разброса значений ряда состоит в использовании метода экспоненциального сглаживания. Метод получил название «экспоненциальное сглаживание» в связи с тем, что каждое значение периодов, уходящих в прошлое, уменьшается на множитель (1 – α).

Каждое сглаженное значение рассчитывается по формуле вида:

где St – текущее сглаженное значение;
Yt – текущее значение временного ряда; St – 1 – предыдущее сглаженное значение; α – сглаживающая константа, 0 ≤ α ≤ 1.

Чем меньше значение константы α , тем менее оно чувствительно к изменениям тренда в данном временном ряду.

Тренд как модель

Если же построить модель, описывающую это явление, то получается довольно простой и очень удобный инструмент для прогнозирования не требующий каких-либо сложных вычислений или временных затрат на проверку значимости или адекватности влияющих факторов.

Итак, что же собой представляет тренд как модель? Это совокупность расчетных коэффициентов уравнения, которые выражают регрессионную зависимость показателя (Y) от изменения времени (t). То есть, это точно такая же регрессия, как и те, что мы рассматривали ранее, только влияющим фактором здесь выступает именно показатель времени.

Важно!

Модель линейного тренда

Как и любая другая регрессия, тренд может быть как линейным (степень влияющего фактора t равна 1) так и нелинейным (степень больше или меньше единицы). Так как линейная регрессия является самой простейшей, хотя далеко не всегда самой точной, то рассмотрим более детально именно этот тип тренда.

Чем более выраженная тенденция роста показателя или его падения, тем будет больше коэффициент a 1 . Соответственно, предполагается, что константа a 0 совместно со случайной компонентой Ɛ отражают остальные регрессионные влияния, помимо времени, то есть всех прочих возможных влияющих факторов.

Рассчитать коэффициенты модели можно стандартным Методом наименьших квадратов (МНК). Со всеми этими расчетами Microsoft Excel справляется на ура самостоятельно, при чем, чтобы получить модель линейного тренда либо готовый прогноз существует целых пять способов, которые мы по отдельности разберем ниже.

Графический способ получения линейного тренда

В этом и во всех дальнейших примерах будем использовать один и тот же динамический ряд – уровень ВВП, который вычисляется и фиксируется ежегодно, в нашем случае исследование будет проходить на периоде с 2004-го по 2012-й гг.

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Добавим к исходным данным еще один столбец, который назовем t и пометим цифрами по возрастающей порядковые номера всех зафиксированных значений ВВП за указанный период с 2004-го по 2012-й гг. – 9 лет или 9 периодов .

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Заполнив указанные поля, несколько раз нажимаем кнопку ОК и получаем готовый график динамики. Теперь выделяем правой кнопкой мыши саму линию графика и из появившегося контекстного меню выбираем пункт Добавить линию тренда

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Построение линейного тренда с помощью формулы ЛИНЕЙН

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Суть этого метода сводится к поиску коэффициентов линейного тренда с помощью функции ЛИНЕЙН , затем, подставляя эти влияющие коэффициенты в уравнение, получим прогнозную модель.

Нам потребуется выделить две рядом стоящие ячейки (на скриншоте это ячейки A38 и B38), далее в строке формул вверху (выделено красным на скриншоте выше) вызываем функцию, написав «=ЛИНЕЙН(», после чего эксель выведет подсказки того, что требуется для этой функции, а именно:

  1. выделяем диапазон с известными значениями описываемого показателя Y (в нашем случае ВВП, на скриншоте диапазон выделен синим) и ставим точку с запятой
  2. указываем диапазон влияющих факторов X (в нашем случае это показатель t, порядковый номер периодов, на скриншоте выделено зеленым) и ставим точку с запятой
  3. следующий по порядку требуемый параметр для функции – это определение того нужно ли рассчитывать константу, так как мы изначально рассматриваем модель с константой (коэффициент a 0), то ставим либо «ИСТИНА» либо «1» и точку с запятой
  4. далее нужно указать требуется ли расчет параметров статистики (в случае, если бы мы рассматривали этот вариант, то изначально пришлось бы выделить диапазон «под формулу» на несколько строк ниже). Указывать необходимость расчета параметров статистики, а именно стандартного значение ошибки для коэффициентов, коэффициента детерминированности, стандартной ошибки для Y, критерия Фишера, степеней свободы и пр. , есть смысл только тогда, когда вы понимаете, что они означают, в этом случае ставим либо «ИСТИНА», либо «1». В случае упрощенного моделирования, которому мы пытаемся научиться, на этом этапе прописывания формулы, ставим «ЛОЖЬ» либо «0» и добавляем после закрывающую скобочку «)»
  5. чтобы «оживить» формулу, то есть заставить ее работать после прописывания всех необходимых параметров, не достаточно нажать кнопку Enter, необходимо последовательно зажать три клавиши: Ctrl, Shift, Enter

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Чтобы получить расчетные значения Y по модели и, соответственно, чтобы получить прогноз, нужно просто подставить формулу в ячейку экселя, а вместо t указать ссылку на ячейку с требуемым номером периода (смотрите на скриншоте ячейку D25 ).

Для сравнения полученной модели с реальными данными, можно построить два графика, где в качестве Х указать порядковый номер периода, а в качестве Y в одном случае – реальный ВВП, а, в другом – расчетный (на скриншоте диаграмма справа).

Построение линейного тренда с помощью инструмента Регрессия в Пакете анализа

В статье , по сути, полностью описан этот метод, единственная же разница в том, что в наших исходных данных только один влияющий фактор Х (номер периода – t ).

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Прогнозирование с помощью линейного тренда через функцию ТЕНДЕНЦИЯ

Этот метод отличается от предыдущих тем, что он пропускает необходимые ранее этапы расчета параметров модели и подстановки полученных коэффициентов вручную в качестве формулы в ячейку, чтобы получить прогноз, эта функция как раз и выдает уже готовое рассчитанное прогнозное значение на основе известных исходных данных.

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Минус данного метода в том, что он не показывает ни уравнения модели, ни его коэффициентов, из-за чего нельзя сказать, что на основе такой-то модели мы получили такой-то прогноз, также как и нет какого-либо отражения параметров качества модели, того таки коэффициента детерминации, по которому можно было бы сказать имеет ли смысл брать во внимание полученный прогноз или нет.

Прогнозирование с помощью линейного тренда через функцию ПРЕДСКАЗ

Суть данной функции целиком и полностью идентична предыдущей, разница лишь в порядке прописывания исходных данных в формуле и в том, что нет настройки для наличия или отсутствия коэффициента a 0 (то есть функция подразумевает, что этот коэффициент, в любом случае, есть)

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Полученные результаты, как и в методе выше, это лишь готовый результат расчета прогнозного значения по линейной трендовой модели, он не выдает ни погрешностей, ни самой модели в математическом выражении.

Подводя итог к статье

Линия тренда в Excel. Процесс построения

Линия тренда — это один из основных инструментов анализа данных

Чтобы сформировать линию тренда , необхдимо совершить три этапа, а именно:
1. Создать таблицу;
2.
3. Выбрать тип линии тренда.

После сбора всей необходимой информации, можно приступить непосредственно к выполнению шагов на пути к получению конечного результата.

Следующее действие построение самой линии тренда . Итак, для этого необходимо вновь выделить график и выбрать вкладку «Макет» на ленте задач. Следом в данном меню нужно нажать на кнопку «Линия тренда » и выбрать «линейное приближение» или же «экспоненциальное приближение».

Линейная аппроксимация . По характеру данная линия прямая, и стандартно применяется в элементарных случаях, когда функция увеличивается или же уменьшается в приблизительном постоянстве.

Логарифмическая аппроксимация. Если величина сначала верно и быстро растет или же наоборот — убывает, а вот затем, спустя значения, стабилизируется, то данная линия тренда подойдет как нельзя кстати.

Полиномиальная аппроксимация . Переменное возрастание и убывание – вот характеристики, что свойственны данной линии. Причем, степень самих полиномов (многочленов) определяется количеством максимумов и минимумом.

Степенная аппроксимация . Характеризует монотонное возрастание и убывание величины, но применение ее невозможно, если данные имеют отрицательные и нулевые значения.

Скользящее среднее . Используется чтобы наглядно показать прямую зависимость одного от другого, путем сглаживания всех точек колебания. Это достигается путем выделения среднего значения между двумя соседними точками. Таким образом, график усредняется, а количество точек сокращается до значения, что было выбрано в меню «Точки» пользователем.

Как используется? Д ля прогнозирования экономический вариантов используется именно полиноминальная линия, степень многочлена которой определяется на основе нескольких принципов: максимизации коэффициента детерминации, а также экономической динамики показателя в период, за который требуется прогноз.

Следуя всем этапам формирования и, разобравшись в особенностях, можно построить всего первичную линию тренда , которая лишь отдаленно соответствует реальным прогнозам. Но вот после настройки параметров можно уже говорить о более реальной картине прогноза.

Линия тренда в Excel. Настройка параметро в функциональной линии

Нажав на кнопку «Линия тренда », выбираем необходимое меню под названием «Дополнительные параметры». В появившемся окне следует нажать на «Формат линии тренда », а после поставить и отметку напротив значения «поместить на диаграмму величину достоверности аппроксимации R^2». После этого закрываем меню, нажав на соответственную кнопку. На самой же диаграмме появляется коэффициент R^2= 0,6442.

После этого отменяем вводимые изменения. Выделив график и нажав на вкладку «Макет», следом нажимаем на «Линию тренда » и наживаем на «Нет». Следом, перейдя в функцию «Формат линии тренда », нажимаем на полиноминальную линию и пытаемся добиться значения R^2= 0,8321, меняя степень.

Чтобы просмотреть формулы или составить другие, отличные от стандартных вариации прогнозов, достаточно не бояться экспериментировать со значениями, а особенно – с полиномами. Таким образом, используя лишь одну программу Excel, можно создать достаточно точный прогноз исходя из вводимых данных.

Уравнением регрессии Y от X называют функциональную зависимость у=f(x) , а ее график – линией регрессии.

Excel позволяет создавать диаграммы и графики довольно приемлемого качества. Excel имеется специальное средство — Мастер диаграмм, под руководством которого пользователь проходит все четыре этапа процесса построения диаграммы или графика.

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

В Excel 2007 названия осей ставятся во вкладке меню МАКЕТ (рис. 32).

Рис. 32. Настойка названий осей графика в Excel 2007

Для получения математической модели необходимо построить на графике линию тренда. В Excel 2003 и 2007 нужно щелкнуть правой кнопкой мыши на точки графика. Тогда в Excel 2003 появится вкладка с перечнем пунктов, из которых выбираем ДОБАВИТЬ ЛИНИЮ ТРЕНДА (рис. 33).

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

После нажатия на пункт ДОБАВИТЬ ЛИНИЮ ТРЕНДА появится окно ЛИНИЯ ТРЕНДА (рис. 34). Во вкладке ТИП можно выбрать следующие типы линий: линейная, логарифмическая, экспоненциальная, степенная, полиномиальная, линейная фильтрация.

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

В Excel 2007 после того, как щелкнем правой кнопкой мыши на точки графика, появится список пунктов меню, из которого ВЫБИРАЕМ ДОБАВИТЬ ЛИНИЮ ТРЕНДА (рис. 36).

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Что Такое Аппроксимация Данных в Excel • Аппроксимация в excel

Устанавливаем необходимые флажки и нажимаем кнопку ЗАКРЫТЬ .

На графике появится линия тренда, соответствующее ей уравнение и величина достоверности аппроксимации.

Диаграммы и графики используются для анализа числовых данных, например, для оценки зависимости меж-ду двумя видами значений. С этой целью к данным диаграммы или графика можно добавить линию тренда и ее уравнение, прогнозные значения, рассчитанные на несколько периодов вперед или назад.

Предусмотрено несколько вариантов формирования линии трен-да.

Прямая линия тренда (линейный тренд) наилучшим образом подходит для величин, изменяющихся с постоянной скоростью. Приме-няется в случаях, когда точки данных расположены близко к прямой.

Логарифмическая линия тренда соответствует ряду данных, значения которого вначале быстро растут или убывают, а затем постепенно стабилизируются. Может использоваться для положительных и отрицательных данных.

Полиномиальной функцией (до 6-й степени включительно): y= b + c 1 *x + c 2 *x 2 + c 3 *x 3 + . + c 6* x 6

Полиномиальная линия тренда используется для описания попеременно возрастающих и убывающих данных. Степень полинома подбирают таким образом, чтобы она была на единицу больше количества экстремумов (максимумов и минимумов) кривой.

Степенная линия тренда дает хорошие результаты для положительных данных с постоянным ускорением. Для рядов с нулевыми или отрицательными значениями построение указанной линии трен-да невозможно.

где c и b — константы, е — основание натурального логарифма.

Экспоненциальный тренд используется в случае непрерывного возрастания изменения данных. Построение указанного тренда не- возможно, если в множестве значений членов ряда присутствуют нулевые или отрицательные данные.

С использованием линейной фильтрации по формуле: F t = (A t +A (t-1) +⋯+A (t-n+1))/n

Функция ЛИНЕЙН
Для линеаризации в предыдущих примерах мы использовали функцию map() , которая возвращает целые числа. Что делать, если нужна более высокая точность? Можно работать в более мелкой шкале (например миллиметры вместо сантиметров), а можно сделать свой map, который будет считать во float :
специалист
Мнение эксперта
Витальева Анжела, консультант по работе с офисными программами
Со всеми вопросами обращайтесь ко мне!
Задать вопрос эксперту
интерполирующей функцией невозможно описать данные при повторении эксперимента в одних тех же начальных условиях требуется статистическая обработка;. Если же вам нужны дополнительные объяснения, обращайтесь ко мне!
Знакомое нам всем число π (пи) – это бесконечная десятичная дробь. π = 3,1415926535897932 …. При вычислениях, в которых используется число «пи», принято брать не дробь целиком (но это и невозможно, ведь она бесконечна), а только 2 цифры после запятой.

Табличные зависимости — Аппроксимация табличных зависимостей

«Сколько будет стоить ремонт комнаты в квартире?» Поднимаем старые записи, делаем поправку на инфляцию за прошедшие годы, учитываем, что в прошлый раз купили материалы на 10% дешевле рыночной цены и – ориентировочную стоимость мы уже знаем…

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: