Прогнозирование с помощью Excel (Эксель модели примеры методы)
Практически в любой сфере деятельности, от экономики до инженерии, существует востребованность предсказать результат того или иного действия, получить значения и приблизительные данные. В этом направлении есть масса различного софта. И большинство этого программного обеспечения имеет платные функции.
Табличный процессор Microsoft имеет в своем программном обеспечении мощный инструмент для прогнозирования, который позволяет построить целый ряд различных моделей и с легкостью на практике применять различные методы. При этом в большинстве случаев этот инструмент дает более достоверные результаты, чем у платных программ. Как и каким образом? Давайте разберемся.
Прогнозирование – поиск темпов развития и получаемого результата относительно исходных данных в конкретное время.
Рассмотрим несколько способов, которые могут дать прогнозированный результат:
Линия тренда – графическое отображение прогнозирования за счет экстраполяции. Звучит заумно? На практике все проще.
Давайте попробуем спрогнозировать сумму доходов компании через 36 месяцев на основе показателей за прошлые 12 лет.
Построим точечную диаграмму на основе исходных данных компании, а именно ее прибыль в течение всех 12 лет. Запишем исходные данные по прибыли в таблицу, выделим все ее поля и перейдем в меню «Вставка» — «Диаграмма» и выберем точечный вид диаграммы.
Для построения линии тренда выберем любую точку на диаграмме, откроем контекстное меню правой клавишей мышки и выберем из списка «Добавить линию тренда. ». В появившемся меню выбора аппроксимации выберем тип «Линейная».
Произведем небольшие настройки формата линии: «Прогноз» установим на три года, вписываем «3.0», и укажем, чтобы показывалась величина достоверности и само уравнение на диаграмме.
По построенной линии тренда можем спрогнозировать доход через три года – он будет более 4500 тыс. руб. Достоверность прогнозирования принято считать верным при «0.85» ед. Эффективность прогнозирования не будет успешным, если период будет превышать 30% от периода базы.
Также в наборе функций программы есть ряд стандартных фунций создания прогноза. Одним из таких является оператор «ПРЕДСКАЗ», синтаксис которого таковой: «=ПРЕДСКАЗ(X;известные_значения_y;известные значения_x)».
Аргумент «Х», исходя из нашей таблицы, это искомый год для прогнозирования. «Значения у» — прибыль за прошлое время. «Значения х» — года, в течение которых были собраны данные.
Узнаем, на основе уже полученных данных прогноз на следующий год с помощью оператора «ПРЕДСКАЗ». Для этого вставим в ячейку прибыли на 2018 год с помощью мастера функций оператор «ПРЕДСКАЗ».
В появившемся диалоговом окне укажем все исходные данные, согласно описанию выше.
Полученный результат совпадает с результатом предыдущего метода, поэтому можно считать прогнозирование прибыли достоверным. Для визуального подтверждения можем построить диаграмму.
Еще одним статическим оператором, который можно использовать для прогнозирования, является оператор «ТЕНДЕНЦИЯ» со следующим синтаксисом: «=ТЕНДЕНЦИЯ(Известные значения_y;известные значения_x; новые_значения_x;[конст])». Аргументы оператора идентичны аргументам оператора «ПРЕДСКАЗ».
Попробуем провести прогнозирование на следующий год, используя оператор «ТЕНДЕНЦИЯ». В новую ячейку вставим функцию из мастера функций.
Заполняем аргументы исходными данными и убеждаемся, что очередной метод прогнозирования прекрасно справляется со своей задачей – его результат схож с результатами прошлых шагов и является достоверным.
Аналогичным методом для прогноза данных является функция «РОСТ», за исключением того, что он использует при расчете прогноза экспоненциальную зависимость, в отличие от предыдущих методов, которые использовали линейную. Его аргументы идентичны аргументам оператора «ТЕНДЕНЦИЯ».
Как и в предыдущих шагах, вставляем в новую ячейку функцию «РОСТ», заполняем аргументы исходными данными и сравниваем результат прогнозирования. Он также дает достоверные данные, схожие с предыдущими.
Другой оператор, который может спрогнозировать результат на определенный период времени, оператор «ЛИНЕЙН», который основан на линейном приближении. Его синтаксис схож с прошлыми операторами: «=ЛИНЕЙН(Известные значения_y;известные значения_x; новые_значения_x;[конст];[статистика])».
Вставим новую функцию в ячейку с прогнозированным годом и заполним аргументы.
Как видим, у оператора отсутствует аргумент новых значений. Он измеряет само значение выручки. А сам результат прогнозирования необходимо подсчитать отдельно.
Чтобы получить прогнозирование на следующий год, необходимо полученное значение линейного тренда умножить на период времени, в нашем случае «3» года, и добавить прибыль за последний год. Получаемый прогноз также схож со всеми предыдущими.
Несмотря на используемый метод, все результаты прогнозирования очень схожи и дают достоверный результат, на который можно опираться для дальнейших действий. Стоит учитывать, что этот результат всегда может измениться из-за нестабильной компании или любых других форс-мажорных ситуаций.


Прогнозирование в среде Excel
Понятие и особенности прогнозирования. Стандартная ошибка предсказываемого среднего значения. Прогнозирование при наличии авторегрессии ошибок. Точечное и интервальное прогнозирование, основанное на модели линейной регрессии, коэффициент ее детерминации.
Алгоритм Прогнозирования Объема Продаж в ms Excel
Становись умнее
В связи с этим актуальность изучения методов алгоритма прогнозирования, исследованных в данной работе не вызывает сомнения.
Целью работы стали систематизация теоретических данных по выбранной теме и их применение на конкретном предприятии. Для достижения этой цели были поставлены следующие задачи:
1. определить значение прогнозирования на современном этапе;
. выявить методы использования трендовых моделей в прогнозировании объемов продаж;
. применить теоретические положения об использовании трендовых моделей для прогнозов к статистическим данным компании «КЛАД», на основании чего построить прогноз объемов продаж на следующий сезон.
Работа имеет не только теоретическое, но и высокое практическое значение. По сути, она является методическим пособием по применению алгоритма прогнозирования объема продаж с использованием MS Excel, который может быть по аналогии использован не только на упомянутом предприятии, но и в других отраслях народного хозяйства.
1. Использование трендовых моделей в прогнозировании объемов продаж
1.1 Сущность трендовых моделей и их использование для прогнозов
Одна из важнейших групп методов прогнозирования основана на анализе временных рядов.
Прогнозирование на основе анализа временных рядов предполагает, что происходившие изменения в объемах продаж могут быть использованы для определения этого показателя в последующие периоды времени. Временные ряды, обычно служат для расчета четырех различных типов изменений в показателях: трендовых, сезонных, циклических и случайных.
Тренд — это изменение, определяющее общее направление развития, основную тенденцию временных рядов. Выявление основной тенденции развития (тренда) называется выравниванием временного ряда, а методы выявления основной тенденции — методами выравнивания.
Один из наиболее простых приемов обнаружения общей тенденции развития явления — укрупнение интервала динамического ряда. Смысл этого приема заключается в том, что первоначальный ряд динамики преобразуется и заменяется другим, уровни которого относятся к большим по продолжительности периодам времени.
Наиболее часто могут использоваться следующие функции:
парабола второго порядка: Yt = b0 + b1t + b2t2
кубическая парабола: Yt = b0 + b1t + b2t2 + b3t3
3. при постоянных темпах роста — показательная функция:
5. при снижении с замедлением — гиперболическая функция:
Однако аналитическое выравнивание содержит в себе ряд условностей: развитие явлений обусловлено не только тем, сколько времени прошло с отправного момента, а и тем, какие силы влияли на развитие, в каком направлении и, с какой интенсивностью. Развитие явлений во времени выступает как внешнее выражение этих сил.
Оценки параметров b0, b1,… bn находятся методом наименьших квадратов, сущность которого состоит в отыскании таких параметров, при которых сумма квадратов отклонений расчетных значений уровней, вычисленных по искомой формуле, от их фактических значений была бы минимальной.
Для сглаживания экономических временных рядов нецелесообразно использовать функции, содержащие большое количество параметров, так как полученные таким образом уравнения тренда (особенно при малом числе наблюдений) будут отражать случайные колебания, а не основную тенденцию развития явления.
Подбор вида функции, описывающей тренд, параметры которой определяются методом наименьших квадратов, производится в большинстве случаев эмпирически, путем построения ряда функций и сравнения их между собой по величине среднеквадратической ошибки.
Разность между фактическими значениями ряда динамики и его выровненными значениями характеризует случайные колебания (иногда их называют остаточные колебания или статистические помехи). В некоторых случаях последние сочетают тренд, циклические колебания и сезонные колебания.
Сезонные колебания — повторяющиеся из года в год изменения показателя в определенные промежутки времени. Наблюдая их в течение нескольких лет для каждого месяца (или квартала), можно вычислить соответствующие средние, или медианы, которые принимаются за характеристики сезонных колебаний.
В самой простой форме индекс сезонности рассчитывается как отношение среднего уровня за соответствующий месяц к общему среднему значению показателя за год (в процентах). Все другие известные методы расчета сезонности различаются по способу расчета выровненной средней. Чаще всего используются либо скользящая средняя, либо аналитическая модель проявления сезонных колебаний.
Большинство методов предполагает использование компьютера.
Относительно простым методом расчета индекса сезонности является метод центрированной скользящей средней.
Используя метод скользящей средней, необходимо последовательно осуществить следующие этапы:
. решить, данные, за сколько лет должны быть включены в расчет. Можно использовать данные за один год, но для большей достоверности расчетов лучше использовать данные, по крайней мере, за два года, а если сезонные колебания значительны, — то и более.
. рассчитать средний объем продаж за месяц по данным;
. рассчитать индекс сезонности для конкретного месяца;
. повторить этапы 2 и 3 для этого же месяца следующего года;
. определить средний индекс в этом месяце по данным за два года;
. рассчитать соответствующие индексы для всех месяцев;
. обобщить данные о силе колеблемости показателей динамического ряда из-за их сезонного характера. При этом используется среднее квадратическое отклонение индексов сезонности (в процентах) от 100%.
Сравнение средних квадратических отклонений, вычисленных за разные периоды времени, показывает сдвиги в сезонности.
Расчет индексов сезонности является первым этапом в составлении прогноза. Обычно этот расчет проводится вместе с оценкой тренда и случайных колебаний и позволяет корректировать прогнозные значения показателей, полученных по тренду. При этом необходимо учитывать, что сезонные компоненты могут быть аддитивными и мультипликативными.
Таким образом, временной ряд, характеризующий величину цикла систематических колебаний, можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей.
Итак, временной ряд — это последовательность наблюдений некоторой величины в последовательные моменты времени.
Аддитивная модель представляет собой обобщение множественной регрессии, которая является частным случаем общей линейной модели.
Аддитивную модель можно представить в виде формулы:
где F — прогнозируемое значение; Т — тренд; S — сезонная компонента; Е — ошибка прогноза.
Применение мультипликативных моделей обусловлено тем, что в некоторых временных рядах значение сезонной компоненты представляет собой определенную долю трендового значения. Эти модели можно представить формулой:
На практике отличить аддитивную модель от мультипликативной можно по величине сезонной вариации. Аддитивной модели присуща практически постоянная сезонная вариация, тогда как у мультипликативной модели она возрастает, или убывает. Графически это выражается в изменении амплитуды колебания сезонного фактора. Это показано на рис. 1.
Рисунок 1. Аддитивная и мультипликативная модели прогнозирования
Последовательно используя эту формулу, экспоненциальный объем продаж Zt можно выразить через фактические значения объема продаж Y:
SO — начальное значение экспоненциальной средней.
Обобщая результаты прогнозирования с помощью методов временных рядов, необходимо оценить точность расчетов, на основании которой можно сделать вывод об аппроксимирующей способности моделей.
Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели:
1. Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.
2. Вычитая из фактических значений объемов продаж значения тренда, определяют величины сезонной компоненты и корректируют таким образом, чтобы их сумма была равна нулю.
3. Рассчитываются ошибки модели как разности между фактическими значениями и значениями модели.
Fф t-1 — фактическое значение объема продаж в предыдущем году;
Практическая реализация данного метода выявила его следующие особенности:
· для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;
· применение полиноминального тренда вместо линейного позволяет значительно сократить ошибку модели;
· при наличии достаточного количества данных метод дает хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.
2. Применение алгоритма на примере исследования информации об объемах сбыта мороженого «Пломбир» фирмы «КЛАД», г. Кунгур Пермский край
Исходные данные: объемы реализации продукции за два сезона.
В качестве исходной информации для прогнозирования была использована информация об объемах сбыта мороженного «Пломбир» фирмы «КЛАД» г. Кунгура Пермского края. Данная статистика характеризуется тем, что значения объема продаж имеют выраженный сезонный характер с возрастающим трендом.
Задача: составить прогноз продаж продукции на следующий год по месяцам.
Реализуем алгоритм построения прогнозной модели, описанной выше. Решение данной задачи осуществим в среде MS Excel, что позволит существенно сократить количество расчетов и время построения модели.
Определяем тренд, наилучшим образом аппроксимирующий фактические данные. Для этого используем полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.
На рисунке показано, что полиномиальный тренд аппроксимирует фактические данные гораздо лучше, чем предлагаемый обычно в литературе линейный. Коэффициент детерминации полиномиального тренда (0,7435) гораздо выше, чем линейного (4Е — 05). Для расчета тренда рекомендуется использовать опцию «Линия тренда» MS Excel.
Применение других типов тренда (логарифмический, степенной, экспоненциальный, скользящее среднее) также не дает эффективного результата. Они неудовлетворительно аппроксимируют фактические значения, коэффициенты их детерминации ничтожно малы:
Вычитая из фактических объемов продаж значения тренда, определяем величины сезонной компоненты, используя при этом пакет программных данных MS Excel.
Итоги расчета значений сезонной компоненты приведем в таблице:
Таблица 3. Расчет средних значений сезонной компоненты
Рассчитываем ошибки модели как разности между фактическими значениями и значениями модели.
Находим среднеквадратическую ошибку модели (Е) по формуле:
Величина полученной ошибки позволяет говорить, что построенная модель хорошо аппроксимирует фактические данные, то есть она вполне отражает тенденции, определяющие объем продаж, и является предпосылкой для построения прогнозов высокого качества.
На основе модели строим окончательный прогноз объема продаж. Для смягчения влияния прошлых тенденций на достоверность прогнозной модели, сочетаем трендовый анализ с экспоненциальным сглаживанием. Это позволит нивелировать недостаток адаптивных моделей, то есть учесть наметившиеся новые экономические тенденции.
Fф t-1 — фактическое значение объема продаж в предыдущем году;
Константу сглаживания рекомендуется определять методом экспертных оценок, как вероятность сохранения существующей рыночной конъюнктуры, то есть, если основные характеристики изменяются (колеблются) с той же скоростью (амплитудой), что и прежде, значит, предпосылок к изменению рыночной конъюнктуры нет, и, следовательно, а = 1, если наоборот, то а = 0.
Таким образом, прогноз на январь третьего сезона определяется следующим образом.
Фактическое значение объема продаж в предыдущем году (Fф t-1) составило 2361 тыс. руб. Принимаем коэффициент сглаживания 0,8. Получим прогнозное значение объема продаж:
Для учета новых экономических тенденций рекомендуется регулярно уточнять модель на основе мониторинга фактически полученных объемов продаж, добавляя их или заменяя ими данные статистической базы, на основе которой строится модель.
Кроме того, для повышения надежности прогноза рекомендуется строить все возможные сценарии прогноза и рассчитывать длительный интервал прогноза.
Проанализировав теоретические аспекты рассматриваемого вопроса и проделав работу по построению прогноза объема продаж конкретного предприятия с помощью определения тренда, возможно сделать следующие выводы:
Для учета новых экономических тенденций рекомендуется регулярно уточнять модель на основе мониторинга фактически полученных объемов продаж, добавляя их или заменяя ими данные статистической базы, на основе которой строится модель.
Кроме того, для повышения надежности прогноза рекомендуется строить все возможные сценарии прогноза и рассчитывать длительный интервал прогноза.
Практическая реализация рассмотренного метода выявила его следующие особенности:
· для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;
· применение полиноминального тренда вместо линейного позволяет значительно сократить ошибку модели;
· при наличии достаточного количества данных метод дает хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.
1. Алисинская Т.В., Сербин В.Д., Катаев А.В. Учебно-методическое пособие по курсу «Экономико-математические методы и модели. Линейное программирование». Таганрог. 2001.
2. Бушуева Л.И. Метод прогнозирования объема продаж // Маркетинг в России и за рубежом. 2004. №2.
. Кошечкин С.А. Алгоритм прогнозирования объема продаж в MS Excel // #»justify»>. Кулакова О. Методы прогнозирования. Анализ аддитивной модели // Бюджетирование и финансовый менеджмент. 2000. №2.
. Лобанова Е. Прогнозирование с учетом экономического роста // Экономические науки. 2002. №1.
. Орлова И.В. Экономико-математические методы и модели. Выполнение расчетов в среде Excel: Практикум. М. 2000.
. Статистический словарь / Под ред. М.А. Королева. М. 1989.
Теги: Прогноз объема продаж Диплом Менеджмент
Просмотров: 27194
Найти в Wikkipedia статьи с фразой: Прогноз объема продаж
Репетиторство
Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Прогнозирование в Еxcel
Спрогнозируйте развитие исследуемого Вами процесса (потребность в работниках, заявленная в службы занятости за месяц) на два месяца следующего за отчетным года с помощью линейной и нелинейной регрессии и оцените результаты графически и аналитически.